Brandon Stiles
Talkiatry
07-11-2025

About Me

Likes the
outside

a2

 Has
Friends

Whatis ?
The 30-Second Primer

Whatitis:
REmote Dictionary Server.

An open-source, in-memory data store.

The Key Idea: It's a Data Structure Server, not
just a Key-Value Store

Caching Session Store Job Queue

Talkiatry’s Current
Architecture

Referral Provider Scheduling Redox
Service Service Service Service

z Databases / Talkiatry Staging v db0 @ (0 % 035% | =~ 36 | @ 2GB | £ 954K | ® 103 | C -

- ’ [S) S AII Key Types ~ J Filter by Key Name or Pattern

Results: 10 001. Scanned 10001/904 319 @ Scanmore [

[HASH scheduling:healow_update_db:424330
<imin G + W Columns

6KB Length:11 TTL: No limit
> O provider 98%
> [redox 2%
> [referral Q 11 value

O T T
1750183378514
v [healow_update_db

| w0 .

0

0

["TypeError: Cannot read properties o...
5

{"provider™:{"npi":"1568620672" facilit...
1750183378664

updateAvailability

1750183377760

4 5}
]
)
i
g
]
g
3]
g
]

{- 15

Use Case:
Caching Provider Availability in the Scheduling Service

The Problem:
- Repetitive, identical API calls for provider availability due to non-debounced clicks in the front-end

(TalkApp).

The Solution:
- Implemented a simple read-through cache using Redis.
- Thefirstrequestis processed, anditsresponseis cached witha 60-second TTL (Time-To-Live).
- Subsequentidentical requests are served instantly from the cache.

The Impact:
- Ahugereductioninredundant processing.
- Result: 58% of all availability requests are now served directly from the cache.

A Few
Before Diving In...

Caching Strategies

How we
write data

Read-Through
App reads from cache. On miss, cache fetches from DB.
(Simplifies app logic).

Write-Through:
App writes to cache and DB simultaneously. (Ensures
consistency).

Write-Back (Write-Behind):
App writes to cache, cache writes to DB later. (Fastest
writes).

Write-Around:
App writes directly to DB, bypassing the cache. (Avoids
caching cold data).

Eviction Policies

VWhat data do we
remove?

Least Recently Used:
Removes the key not accessed for the longest time. ("Use
it or lose it").

Least Frequently Used:
Removes keys that aren’t often accessed

TTL:
Removes keys closest to their expiration time.

noeviction (Default):

Returns an error on writes when memory is full. (This is
the policy that can cause cascading failures if not
managed).

Creative & Advanced
Patterns

An Evolutionin Auth

From to
Sessions

Current: Stateless Proposed: Stateful

User User
Browser Browser

l

API Server API Server

Verify on

‘ Every Call A
N API >
ﬁl m Server Instant

User Browser Lookup

Holding

Appointments

The

Model

Booked!

User confirms booking. The
Redis key is deleted, and the
appointment is written to
main database.

—
User confirms booking. The

Redis key is deleted, and the
database

The
Wrapper

Caching

// Before: Standard data fetch
// Every call queries the database directly.

const providers = await ProviderModel.findAl11();

// After: With the Caching Wrapper

// 1. A developer opts-in by extending the base model
/! and adding a single property.
class ProviderModel extends CachingBaseModel {

static useCache = true;

}

// 2. The data fetch code remains identical, but now
it avtomatically checks Redis first!
const providers = await ProviderModel.findAl1l1();

Real-Time

"Find a Pharmacy Near Me"

async function populatePharmacyCache() {
const pharmacies = await mockDbClient.getAllPharmacies();
const locations = phari flatMap(p => [p.lon, p.lat,

if (locatti .length > 0) {
await mockRedisClient.g dd('pharmacies:locations', 1

console. log('Nightly job comp

const mockRedisClient
d: async (key, locations) => {
(" [Redis] Added ${1 ons.length / 3} locations to
th /

async (key, lon, lat, radius, unit, withdist)
console.log([Redis] Searching '${key}' within ${radius}$

wntown Atlanta', '0.15'], ['Walgreens - Midtown', '3.5'11;

async function findNearbyPharmacies(userCoordinates) {
const { lon, lat } 2.
const searchRadiuskm =

const results = await mockRedisClient.
‘pharmacie 5

lon,

lat

searchRadi

km',

‘WITHDIST'

);

name,
distance: "${parseFloat(distance).toFixed(2)} km’
)
}

Distributed for
Critical Operations

const redisClient = {

: new Map(),
async function(key,
?7.NX && this

return '0K';

1,

async function sendPrescriptionTo a 3 cationld) {
console. log(Sending refill for ${medicationId} for patient ${patientMrn}..

e(resolve setTimeout(
cription sent

async function re 1
const resourceK “refill:¢{patientMr onld} ;
const lockKey ;
const lockValue = 'in-progr
const lockTtWMs = ;

is already in pr

duplietitien;

try {
await sendPrescriptionToEcw(patientirn, m
} finally {

('Pati
tRefillWithL
tRefillWithL

In closing... a

Thank you!

Powering a Real-Time Patient Feed (5 mins)

Mockup of a patient's home screen feed: "Upcoming Appointment," "New Message from Dr. Smith," "Refill Ready."

Show ZADD, ZREVRANGEBYSCORE.

Conclusion & Vision (3 minutes)

List the 4 patterns discussed: Geospatial, Sorted Sets (Feeds), Distributed Locks,
and Atomic Counters (Analytics).

Reiterate the theme: moving from a utility to a strategic tool.

Use Case: Caching the Matching Engine

- The Problem: The patient-provider matching process is computationally expensive. Users often refresh the screen without
changing search criteria, triggering the same intensive calculation repeatedly
- The Solution: Cache the results of each unique matching request in Redis.
- Aunique cache key is created based on the specific search parameters (e.g., date, time window, provider
preferences).
- When a user refreshes with the same criteria, the results are served instantly from the cache instead of
re-running the match.
- The Impact:
- Drastically reduces server load on the matching service.
- Creates a faster, more responsive experience for patients looking for a provider.

Driving Adherence with Personalized Streaks

A mockup of a private view within the patient portal. It shows a simple,
encouraging message like: "You're on a 4-week streak for completing your
check-ins!" or "You've attended 3 appointments in a row. Great job staying on

track!"

No scores, no comparisons, just positive reinforcement.

B. Building a Smarter, Faster Patient Feed (5 mins)

Mockup of a patient's home screen feed: "Upcoming Appointment," "New Message from Dr. Smith," "Refill Ready."

Show commands like ZADD, ZREVRANGEBYSCORE.

Preventing Double-Bookings with Distributed Locks (5 mins)

Ul showing two users trying to book the same appointment slot simultaneously.
One succeeds, one gets an "already booked" message.

Show a pseudo-code implementation of the Redlock algorithm.

Rate Limiting (5 mins)

A simple dashboard showing "Messages Sent per Minute" or "Failed Logins per User."

Show commands like INCR, EXPIRE.

State Machine for Patient Intake & Onboarding

e Adiagram showing the flow of the 10-minute patient assessment: InsuranceCheck -> CoverageVerified ->
InitialQuestions -> SchedulingOffered -> Completed.
° Show Redis Hash commands: HSET, HGETALL.

