

The Key to
Delivering Value

Brandon Stiles
Talkiatry
07−11−2025

Redis

Unlocking Advanced Patterns for
Scalable Healthcare

About Me

Friend Active

Has
Friends

Likes the
outside

What is Redis?
The 30−Second Primer

The Key Idea: It's a Data Structure Server, not
just a Key-Value Store

What it is:
REmote DIctionary Server.
An open-source, in-memory data store.

Caching Session Store Job Queue

Talkiatry’s Current Redis
Architecture

The Problem:
- Repetitive, identical API calls for provider availability due to non-debounced clicks in the front-end

(TalkApp).

The Solution:
- Implemented a simple read-through cache using Redis.
- The first request is processed, and its response is cached with a 60−second TTL (Time-To-Live).
- Subsequent identical requests are served instantly from the cache.

The Impact:
- A huge reduction in redundant processing.
- Result: 58% of all availability requests are now served directly from the cache.

Use Case:
Caching Provider Availability in the Scheduling Service

A Few Primers / Reminders
Before Diving In…

How we
write data

Caching Strategies Read-Through
App reads from cache. On miss, cache fetches from DB.
(Simplifies app logic).

Write-Through:
App writes to cache and DB simultaneously. (Ensures
consistency).

Write-Back (Write-Behind):
App writes to cache, cache writes to DB later. (Fastest
writes).

Write-Around:
App writes directly to DB, bypassing the cache. (Avoids
caching cold data).

What data do we
remove?

Eviction Policies
Least Recently Used:
Removes the key not accessed for the longest time. ("Use
it or lose it").

TTL:
Removes keys closest to their expiration time.

noeviction (Default):
Returns an error on writes when memory is full. (This is
the policy that can cause cascading failures if not
managed).

Least Frequently Used:
Removes keys that aren’t often accessed

Creative & Advanced Redis
Patterns

An Evolution in Auth
From Stateless to Stateful
Sessions

●

Current (Stateless):
Uses standard JWTs, requiring cryptographic verification on
every API call.

Proposed (Stateful):
Use Redis to store sessions. After login, the client gets a simple
session ID, turning future authentication into a fast Redis
lookup.

Key Advantages:
- Performance: Swaps slow crypto verification for a

microsecond Redis lookup.
- Security: Allows for instant session revocation (e.g.,

"log out everywhere"), which is not possible with JWTs.

Holding
Appointments
The Ticketmaster Model

The Challenge:
Our current method of holding appointment slots in the main
database is slow and requires complex cleanup for abandoned
holds.

The Redis Solution:
Use SETNX to atomically create a key for the slot with a
5-minute EXPIRE time, leveraging Redis's built-in TTL feature.

The Benefits:
- Prevents Double-Booking: The atomic operation

ensures only one user can hold a slot.
- Reduces Database Load: Moves frequent, temporary

writes out of the main database.
- Self-Cleaning: Redis automatically releases abandoned

holds, eliminating the need for cleanup jobs.

The Challenge:
Implementing caching for frequently-read but rarely-changed
data is repetitive work for developers.

The Proposed Solution: A lightweight database model
wrapper that enables read-through caching automatically with a
single line of code (e.g., useCache: true).

High-Impact Use Cases:

● Provider Data & Medallion Models: Caching this
rarely updated data would greatly reduce database load.

● Insurance Mapping Table: Caching its 37,000+
records would fix a significant server performance
bottleneck.

The Smart Caching
Wrapper

Real-Time
Geolocation
"Find a Pharmacy Near Me"

The Challenge:
Finding nearby pharmacies with traditional database queries is
slow and puts a heavy load on our primary database, especially
with many concurrent users.

The Redis Solution:
Leverage Redis's built-in Geospatial data structure, which is
optimized for this exact purpose.

The Benefits:

- Extremely Fast: Turns a complex database query into a
simple, microsecond operation.

- Reduces Database Load: Offloads all geospatial
calculations from our primary database.

- Versatile: Can be used for pharmacies, labs, provider
offices, and more.

Distributed Locks for
Critical Operations

The Challenge:
Finding nearby pharmacies with traditional database queries is
slow and puts a heavy load on our primary database, especially
with many concurrent users.

The Redis Solution:
Leverage Redis's built-in Geospatial data structure, which is
optimized for this exact purpose.

The Benefits:

- Extremely Fast: Turns a complex database query into a
simple, microsecond operation.

- Reduces Database Load: Offloads all geospatial
calculations from our primary database.

- Versatile: Can be used for pharmacies, labs, provider
offices, and more.

In closing…

Thank you!

Powering a Real-Time Patient Feed (5 mins)

Mockup of a patient's home screen feed: "Upcoming Appointment," "New Message from Dr. Smith," "Refill Ready."

Show ZADD, ZREVRANGEBYSCORE.

Conclusion & Vision (3 minutes)

List the 4 patterns discussed: Geospatial, Sorted Sets (Feeds), Distributed Locks,
and Atomic Counters (Analytics).

Reiterate the theme: moving from a utility to a strategic tool.

- The Problem: The patient-provider matching process is computationally expensive. Users often refresh the screen without
changing search criteria, triggering the same intensive calculation repeatedly

- The Solution: Cache the results of each unique matching request in Redis.
- A unique cache key is created based on the specific search parameters (e.g., date, time window, provider

preferences).
- When a user refreshes with the same criteria, the results are served instantly from the cache instead of

re-running the match.
- The Impact:

- Drastically reduces server load on the matching service.
- Creates a faster, more responsive experience for patients looking for a provider.

Use Case: Caching the Matching Engine

Driving Adherence with Personalized Streaks

A mockup of a private view within the patient portal. It shows a simple,
encouraging message like: "You're on a 4-week streak for completing your
check-ins!" or "You've attended 3 appointments in a row. Great job staying on
track!"

No scores, no comparisons, just positive reinforcement.

B. Building a Smarter, Faster Patient Feed (5 mins)

Mockup of a patient's home screen feed: "Upcoming Appointment," "New Message from Dr. Smith," "Refill Ready."

Show commands like ZADD, ZREVRANGEBYSCORE.

Preventing Double-Bookings with Distributed Locks (5 mins)

UI showing two users trying to book the same appointment slot simultaneously.
One succeeds, one gets an "already booked" message.

Show a pseudo-code implementation of the Redlock algorithm.

Rate Limiting (5 mins)

A simple dashboard showing "Messages Sent per Minute" or "Failed Logins per User."

Show commands like INCR, EXPIRE.

State Machine for Patient Intake & Onboarding

● A diagram showing the flow of the 10-minute patient assessment: InsuranceCheck -> CoverageVerified ->
InitialQuestions -> SchedulingOffered -> Completed.

● Show Redis Hash commands: HSET, HGETALL.

